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ABSTRACT: We use a statistical tropical cyclone (TC)model, theNorthAtlantic Stochastic HurricaneModel (NASHM),

in combination with sea surface temperature (SST) projections from climate models, to estimate regional changes in U.S.

TC activity into the 2030s. NASHM is trained on historical variations in TC characteristics with two SST indices: global–

tropical mean SST and the difference between tropical North Atlantic Ocean (NA) SST and the rest of the global tropics,

often referred to as ‘‘relative SST.’’ Testing confirms themodel’s ability to reproduce historical U.S. TC activity as well as to

make skillful predictions.WhenNASHM is driven by SST projections into the 2030s, overall NAannual TC counts increase,

and the fractional increase is the greatest at the highest wind intensities. However, an eastward anomaly in mean TC tracks

and an eastward shift in TC formation region result in a geographically varied signal in U.S. coastal activity. Florida’s Gulf

Coast is projected to see significant increases in TC activity relative to the long-term historical mean, and these increases are

fractionally greatest at the highest intensities. By contrast, the northwesternU.S. Gulf Coast and theU.S. East Coast will see

little change.

KEYWORDS: North America; Tropical cyclones; Risk assessment; Probability forecasts/models/distribution; Stochastic

models

1. Introduction

Tropical cyclones (TCs) are among the most hazardous

natural catastrophes to impact the United States (Smith and

Katz 2013). How this hazard evolves with climate variation,

both natural and anthropogenic, is of crucial importance to

coastal populations and is an extremely active area of research.

Other factors being constant, coastal storm-surge hazard is

certain to rise with sea level (Tebaldi et al. 2012), TC rainfall is

projected to increase with high confidence (Kossin et al. 2017;

Knutson et al. 2020), and the interaction of freshwater flooding

and storm surge will be exacerbated (Moftakhari et al. 2017).

Theory indicates that a warming climate causes TC wind in-

tensity to increase, especially at the highest intensity levels, a

result borne out by numerical model simulations (Villarini and

Vecchi 2013; Sobel et al. 2016; Knutson et al. 2020) and ob-

servations (Elsner et al. 2008; Kossin et al. 2013, 2020; Knutson

et al. 2019).

At least as important as intensity for coastal hazard is

evolution in the geographic distribution of TC landfall via

changes in formation and storm track, though the nature and

degree of these changes are considerably more uncertain

than sea level rise, rainfall, and intensity (Knutson et al.

2020). Most model studies find little change or decreases in

global TC annual frequency (Yoshida et al. 2017; Murakami

et al. 2020; Knutson et al. 2020), though the variation across

studies is greater in individual ocean basins. However, sev-

eral studies find an eastward shift in North Atlantic Ocean

(NA) TC formation region toward the eastern tropics

(Murakami and Wang 2010; Wang et al. 2011; Colbert et al.

2013; Yoshida et al. 2017). There is also evidence for east-

ward or northeastward TC track anomalies (Wang et al. 2011;

Colbert et al. 2013; Baldini et al. 2016). In addition to changes

in basinwide TC rates, both the formation region and track

changes would play a crucial role in determining regional

changes in U.S. landfall rates.

Regional and local spatial scales are of primary importance

to disaster and adaptation planning, and it is of considerable

interest to estimate the impact at these scales of global and

basinwide relationships between climate and TC activity.

Here, we use the North Atlantic Stochastic Hurricane Model

(NASHM), a statistical–stochastic model of NA TCs and

their climate variation (Hall and Jewson 2007; Hall and

Yonekura 2013), along with projections of climate variation

from an ensemble of climate models from phase 5 of the

Coupled Model Intercomparison Project (CMIP5) (Taylor

et al. 2012), to estimate U.S. regional TC activity into the

2030s. This time scale is highly relevant to a number of sec-

tors, such as infrastructure development and the insurance

and reinsurance industry. NASHM is able to replicate his-

torical U.S. coastal TC activity on regional scales, as well as

climate-induced variation of that activity (see section 2). It

therefore provides a method to project large-scale climate

variations onto regional TC activity.

We represent climate variation by two annually varying sea

surface temperature (SST) indices: 1) global tropical SST

(GSST), averaged over all longitudes and during the NA

hurricane season; and 2) ‘‘relative SST’’ (RSST), the NA main

development region (MDR) SST minus the tropics over all

longitudes outside the Atlantic. Historical values of GSST andCorresponding author: Timothy M. Hall, timothy.m.hall@nasa.gov
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RSST are derived from the HadISST product (Rayner et al.

2003), while the future projected values are taken from CMIP5

climate model data (Taylor et al. 2012). (See methods

section for further details.) GSST exhibits a secular increase

since the 1970s driven largely by anthropogenic climate change

(Santer et al. 2006; Gillett et al. 2008; Knutson et al. 2013).

RSST can be considered as a proxy during this period for po-

tential intensity (PI), which is a function of SST and atmo-

spheric thermodynamic factors (Bister and Emanuel 2002).

RSST has been shown to be correlated with NA TC activity

(Vecchi and Soden 2007), as well as NA major hurricane ac-

tivity (Murakami et al. 2018).

Large-scale SST indices have an advantage of being relatively

insensitive to heterogeneities in the reanalysis data compared to

historical estimation of PI (Kossin 2015). Moreover, SST data are

available decades earlier than the reanalysis data required for PI

construction, allowing the use of longer historical time periods in

the construction of NASHM. In addition, GSST and RSST are

relatively robust across climate model future projections compared

to the ingredients needed to construct PI. However, these SST in-

dices have the disadvantage that they are only indirectly related to

the specific meteorological mechanisms responsible for evolving

TC characteristics. Thus, we use these large-scale SST variables

largely as proxies for specific meteorological mechanisms. For ex-

ample, reduction in the tropical overturning circulation in a

warming climate (Held and Soden 2006) and a weakening of the

summer midlatitude circulation (Coumou et al. 2015) both impact

TCsteeringwinds andwouldbe representedhereonly indirectly via

increasing large-scale SST. As proxies, the SST variables have

limitations. Emanuel and Sobel (2013) have argued that TC char-

acteristics cannot be expressed as any unique function of SST, other

than the approximate relationship between PI and RSST, and

RSST is not projected to increase with climate warming (Vecchi

et al. 2008; and see below). This leaves the increase in PI projected

by climate models (Sobel et al. 2016) to be captured here by the

increase inGSST, which is an incomplete representation (Emanuel

andSobel 2013). Therefore, our resultsmaybe conservative, as they

do not capture other mechanisms that may increase PI as green-

house gas concentrations increase.

We partly buffer the results here against the limitations of

solely using SST-based climate variables by restricting the time

horizon of the projections. NASHM is a statistical model that

exploits historical relationships between aspects of TC activity

and the SST indices. Once the relationships are established in the

training and calibrating, we use NASHM to estimate TC activity

at projected values of the SST indices. Such projections become

increasingly less reliable as GSST or RSST move increasingly

outside the historical range of variation, and, as mentioned

above, projections in SST may not adequately capture longer-

term trends in PI. Here, we make future projections only up to

the year when the GSST anomaly, as determined from the en-

semble mean of CMIP5 models, reaches 0.758C, or 3.2 standard
deviations above the 1900–2017mean. For RCP4.5 this occurs in

2038; for RCP8.5 it occurs in 2030. Prior to these years

NASHM’s TC-activity projections via its GSST dependence can

be tested. Out-of-sample tests on the highest historical GSST

years verify NASHM’s forecast skill compared to a naive SST-

independent model (see below).

In section 2 we describe NASHM, evaluate its historical

coastal TC activity and perform out-of-sample forecast tests,

quantify model uncertainty, and present the historical and

climate model–generated SST indices. In section 3 we analyze

the TC sensitivity to the SST indices and present the forecast

TC activity in the 2030s, driving NASHMwith SST projections.

In section 4 we discuss mechanism by isolating the SST

dependence of NASHM’s formation, track, and intensity

components.

2. Methods

a. NASHM

The NASHM is a statistical–stochastic model that simulates

the life cycle of TCs from formation through termination.

NASHM was developed by Hall and Jewson (2007) and Hall

and Yonekura (2013) and has been applied to study coastal TC

activity and its relationship to climate (e.g., Hall and Hureid

2015; Hall and Tippett 2017). The model is trained on SST data

and HURDAT2 archives (Landsea and Franklin 2013), in this

application from 1900 to 2017. The SST indices are discussed

below. In the construction of NASHM, attention has been paid

to avoid overfitting. The spatial and temporal scales of

HURDAT2 data used to estimate local rates (formation at a

point, propagation from a point, intensity along a track) is de-

termined objectively by maximizing out-of-sample likelihood.

This procedure strikes the balance between resolving true

structure, which pushes for smaller scales, and including suffi-

cient data to avoid sampling error, which pushes for larger scales.

NASHM shares many characteristics with other statistical

TC track models (e.g., Vickery et al. 2000; James and Mason

2005; Bloemendaal et al. 2020), many of which are used as part

of commercial hurricane risk assessment and are calibrated to

historical observations. Unlike many such models, NASHM is

constructed to be sensitive to indices of climate variation, here

GSST and RSST, via its three primary components—TC for-

mation, track, andmaximum-sustained wind speedVmax. Thus,

it can employ information from global climate model projec-

tions to forecast future TC activity. In this regard, NASHM is

similar to statistical–dynamical TC models (Emanuel et al.

2008; Lee et al. 2018), though such models require environ-

mental fields as input that are more directly related to TC

mechanisms than NASHM’s SST indices.

Figure 1, top row, shows the 1900–2017 HURDAT2 data on

which NASHM is trained and an example stochastic simulation of

the period. The basinwide structure, westward storm movement in

the subtropics, recurvature, and eastward return at midlatitudes, is

well captured. This agreement between the basic basinwide struc-

ture in HURDAT2 and NASHM is further revealed in the track-

density plots in the bottom row of Fig. 1. Once model training is

performed onHURDAT2 and the SST indices, a calibration step is

applied to long-term average landfall rates on several North

American regions. The calibrated model is then used to estimate

climate-driven variations on coastal TC activity. Figure 2 shows

regional landfall rates as functions ofVmax.Anecessary criterion for

lack of model landfall bias is that the stochastic spread in rates

bound the historical rates, a criterion that NASHM meets, as

illustrated in the figure.
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HURDAT2 is known to have underreporting biases in

the earlier part of the record prior to the satellite era, and

even more so prior to era of routine aircraft reconnais-

sance (Landsea 2007; Landsea et al. 2010; Vecchi and Knutson

2011). To buffer NASHM from these biases, at least in part, in

the training data we only use TCs that last at least two days,

reach at least tropical-storm status (at least 63 kmh21 1-min-

sustained Vmax, referred to throughout as ‘‘Cat01’’), and the

origin of tracks is taken as the point at which Cat0 intensity is

achieved, rather than the first reported latitude–longitude fix.

To examine further the sensitivity to these potential early re-

cordHURDAT2 biases, much of the analysis reported below is

subsequently repeated for a version of NASHM trained on

1970–2017 HURDAT2, and the results lead to the same con-

clusions about evolution regional U.S. TC activity.

b. SST indices

The climate indices used here are derived from SST: 1)

GSST, averaged over all longitudes and latitudes 238S–238N,

and each year from July through October (JASO), and 2)

RSST, the NA MDR (208–608W and 68–188N) JASO SST mi-

nus the JASO global 238S–238N region outside the Atlantic. As

noted in section 1, SST indices have the advantage of being

relatively insensitive to heterogeneities in the historic record

and fairly robust across climate model projections. A disad-

vantage of simple SST indices is that their physical link to key

TC characteristics is not direct. SST itself plays a direct role in

formation and intensification via the PI (Bister and Emanuel

2002), but RSST likely underrepresents long-term trends in PI

and thus may provide conservative estimate of future trends in

TC activity. For example, ensemble-mean RSST does not in-

crease in CMIP5 projections, as shown below, even though PI

increases (Sobel et al. 2016). SST variation are also associated

with steering wind variation and, therefore, TC tracks, but the

relationship is indirect and mediated by intermediate mecha-

nisms, for example, Wang et al. (2011) and other references

from the discussion in section 4. Similarly, SST indices have

indirect relationships with wind shear and spatial SST patterns,

important influences on TC activity, for example the Atlantic

meridional mode (Vimont and Kossin 2007). There is no

FIG. 1. Illustration of the historical TC data used to train NASHM, NASHM simulations, and evaluation of

NASHM’s U.S. TC landfall characteristics: (top left) HURDAT2 1900–2017 TC tracks upon which the stochastic

model is trained. Tracks are color coded by maximum sustained wind speed Vmax, showing TS and higher (blue),

Saffir–Simpson Cat1 and higher (yellow), Cat3 and higher (orange), and Cat5 (red). Also shown are the landfall

regions used in subsequent analysis. (top right) An example NASHM stochastic simulation of the 1900–2017 pe-

riod. Also shown are the skill-assessment regions used in subsequent analysis. Also shown is annual track density

(occurrence per year) in 18 boxes for TS and higher TCs: (bottom left) HURDAT2 1900–2017, corresponding to the

tracks of the upper-left panel. (bottom right) The average over 1000 1900–2017 simulations, one of which is shown

in the upper-left panel. White regions correspond to rates below the indicated dark-blue contour.
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guarantee that the intermediate mechanisms providing a re-

lationship between SST, steering winds, and wind shear in the

historical period will continue to operate in a future climate.

These limitations are the reason we limit our future projections

to the 2030s. Beyond this time, GSST will likely be well above

the highest value in the historic training period.

The projected SSTs are computed from the eight CMIP5 climate

models (CCSM4,CNRM-CM5,NorESM1-M,ACCESS1.0,GISS-

E2-R, HadGEM2-CC, HadGEM2-E, and MRI-GCM3S)

that were ranked highest in a model–observation com-

parison of tropical SST anomalies (Brown et al. 2015). We use

one ensemble member for each model and each emission

scenario RCP4.5 and RCP8.5 and an additional RCP4.5 and

RCP8.5 ensemble member for each of the models ranked in

the top three (CCSM4, CNRM-CM5, NorESM1-M) by Brown

et al. (2015). This results in a total of 11 ensemble members for

each emission scenario. The CMIP5 SST projections start in

2006 (Taylor et al. 2012), thereby providing 12 years of overlap

(2006–17) with the historical SST. We use this overlap period

to adjust the projected GSST series such that each ensemble

member’s 2006–17-mean anomaly matches the historical 2006–

17 mean anomaly, resulting in an ensemble-mean adjustment

down of 0.078C. For RSST no adjusting was necessary, as the

ensemble-mean 2006–17-mean RSST already closely matched

the historical mean value over this period.

Figure 3 shows the historical GSST and RSST and the

CMIP5 ensemble-mean projections for the two climate change

emission scenarios, RCP8.5 and RCP4.5. The ensemble-mean

projected GSST continues the historical increase that began in

the 1970s, with RCP8.5 rising faster than RCP4.5. For RSST,

the RCP4.5 and RCP8.5 ensemble-mean projections remain

essentially constant, equal to the historical 2006–17 value,

which is elevated compared to the 1900–2017 RSST mean.

Although individual ensemble members display considerable

interannual variability in RSST, the ensemble means do not.

The low-frequency variation in historical RSST, closely re-

lated to the Atlantic multidecadal oscillation (AMO), is not

FIG. 2. Distribution of annual landfall rates as functions of Vmax in 20 kmh21 bins on six U.S. coastal regions, as labeled by U.S. states

and as mapped in the top-left panel of Fig. 1: Texas, Louisiana–Alabama, Florida, Georgia–North Carolina, Virginia–New Jersey, and

New York–Maine. Red is the NASHM mean from 1000 simulations of 1900–2017, yellow is the inner 90% about the mean, and blue is

computed directly with 1900–2017 HURDAT2. Vertical dashed lines indicate Saffir–Simpson category boundaries, as labeled in the

Texas, Louisiana–Alabama, and Florida panels: TS and categories 1, 2, 3, 4, and 5. Note that for bins with zero historical events a blue

symbol does not appear.

FIG. 3. The SST index covariates for (top) GSST (anomaly rel-

ative to the 1900–2017 mean) and (bottom) RSST. Black repre-

sents the historical annual time series. Blue represents the RCP4.5

CMIP5 ensemble annual mean, and red represents the RCP8.5

CMIP5 ensemble annual mean. The yellow lines are individual

CMIP5 ensemble members for RCP8.5. In the top panel, the lower

dashed line indicates the zero value and the upper dashed line in-

dicates the highest value over the historical period. The vertical

dashed lines indicate the years 2030 and 2038 at which the en-

semble means exceed the highest historical value for RCP8.5 and

RCP4.5, respectively. In the bottompanel, the center dashed line is the

1900–2017 mean and the lower and upper dashed lines indicate 22

and 12 standard deviations about the mean.
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projected to continue in a coherent fashion by these models,

possibly because the models replicate most of the historical

AMO signal as an externally forced variation, rather than a

natural mode of variability (Mann et al. 2020).

c. NASHM-SST forecast skill assessment

We use out-of-sample tests to evaluate NASHM’s ability to

forecast TC rates, given values of GSST and RSST. The

changes projected for the 2030s depend primarily on GSST,

and so we focus on this covariate. We select as a subset of

historical data (the in-sample years) all of the years whose

GSST is less than 1.5 standard deviations above the 1900–2017

GSST mean. There are 109 such in-sample years of the 118

total years. The remaining 9 years (the out-of-sample years:

1987, 1997, 1998, 2003, 2009, 2014, 2015, 2016, and 2017) have

GSST greater than 1.5 standard deviation above the mean. We

then train two versions of NASHM on the in-sample years: 1) a

version that depends on GSST and RSST and 2) a naive ver-

sion, whose components are trained on 1900–2017 HURDAT2

means and variances assuming an annually repeating mean

state, as described in Hall and Jewson (2007), independent of

interannual variation in GSST and RSST. For each model

version, we perform 118 000 simulations for each of the out-of-

sample years.

We evaluate the skill of these out-of-sample forecasts by

comparing the rates with the historical events in the following

manner: A 0.58 grid is defined covering the western North

Atlantic and coastal North America, spanning 658–1008W and

178–468N, 50-km-radius circles are drawn around each grid

point, and TC tracks passing through the circles are counted.

Because of the small area of the circles, passage rates are low

and, to a good approximation, equivalent to the annual prob-

ability of TC passage through the circles. We take the passage

rate averaged over the 11 800 simulations of each out-of-

sample year as the mean rate of a Poisson distribution and

evaluate that distribution at the historical count in the circle for

the year. This results in a model-predicted probability for the

historical event in that year and circle.

We then evaluate the skill in two ways:

1) The log probabilities are summed over all the out-of-sample

years and over specified evaluation regions and intensity

levels. We repeat the procedure using the naive model and

compare the sums of the log probabilities. The climate-

dependent model is deemed more skillful if its total log

probability is greater than that of the naive model. This

procedure is sensitive to the overall counts in a region,

as well as the geographic distribution of counts within

a region.

2) An F score is computed from calculations of true positive

(TP), false positives (FP), and false negatives (FN). The

climate-sensitive and naive model Poisson distributions are

sampled at each location. A model forecast of a TC oc-

currence in the intensity category of interest is recorded TP

if such an event occurred in the out-of-sample historical

record, FP if such an event did not occur. A model forecast

of no TC occurrence in the intensity category of interest is

recorded FN if such an event did occur. From these, the

precision P5 TP/(TP1 FP) and recall R5 TP/(TP1 FN),

are computed, followed by the F score, F 5 2PR/(P 1 R).

We then document the percent difference in F between the

climate-sensitive and naive models. Higher F indicates

better performance. When counting TP, FP, and FN, the

Poisson sampling is random. Values are accumulated over

many repeated realizations of the procedure until the ratio

of the climate-sensitive to naive F scores converges at the

1% level.

We choose five regions within 350 km of the coast to eval-

uate skill: northwest Gulf, Florida, the U.S. Southeast, the U.S.

Northeast, and the full U.S. Gulf and Atlantic Coasts (Fig. 1b).

We also evaluate skill on the complete 658–1008W and 178–
468N domain. The evaluations are performed for Saffir–

Simpson category Cat0, Cat1–2, and Cat3–5 intensity levels.

(The regions and intensity ranges are chosen to balance the

desire to assess skill regionally but still have historical counts

available for scoring.) Table 1 summarizes the results of the

out-of-sample evaluation. In all but one case (15 of 16 region–

intensity combinations), the climate-dependent model is more

skillful than the naive model at forecasting TC occurrence in

high GSST years according to both the log-likelihood com-

parison and the F-score comparison, though theU.S. Southeast

Cat0 difference is marginal. The exception is Cat1–2 storms in

the U.S. Northeast. Many such storms have transitioned from

tropical to extratropical cyclones, which derive their energy

from different meteorological mechanisms, and therefore may

be less sensitive to the tropically basedRSST andGSST indices

used here. In general, the increase in skill is greatest for high-

intensity TCs. Skill scores have the greatest potential for

differentiating models where the differences between the out-

of-sample and in-sample data are greatest, and it is at high

intensity where the high-GSST years are most different frac-

tionally from the in-sample years.

Although testing forecast skill for high GSST years is our

primary focus, we have also performed similar out-of-sample

tests on the five years (1908, 1909, 1910, 1911, and 1916) whose

GSST anomaly is lower than 21.5 standard deviations. In this

case, all of the region–intensity combinations show increased

total log likelihoods using the climate-sensitive model. The

F-score tests cannot be performed on all of the region–intensity

combinations because there are not always historical events

available to allow for TPs. In all cases where there is the pos-

sibility of a TP, the climate-sensitive model’s F score is higher

than the naive model. For cases where there is not the possi-

bility of a TP, the climate-sensitive model has lower FN 1 FP

than the naive model.

To evaluate further NASHM’s skill, we compute the

landfall rates on the same six regions of Fig. 2, but now only

for the nine out-of-sample years of the skill testing. The re-

sults are shown in Fig. 4. The stochastic spread is here larger

than in Fig. 2, because individual simulations are only

nine years long, rather than 118 years. It is common for a

20 km h21 Vmax bin not to be populated over the nine years.

Nonetheless, the historical values fall inside the inner 90%

of the simulations, further evidence for NASHM’s skill in

making probabilistic forecasts.
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d. Uncertainty estimates

In addition to testing skill, we want to estimate the uncer-

tainty of our best-estimate occurrence rates for the historical

baseline and the projections shown below. To do this, we

perform a bootstrap analysis (Efron 1979). The 118 years

(1900–2017) of HURDAT2 are resampled with replacement

100 times. NASHM is then trained on each of the 100 bootstrap

resamples, and each NASHM-bootstrap model is used to

simulate 1000 realizations of the 118-yr period (118 000 years).

Mean TC occurrence rate maps (annual passage rates through

the set of 50-km circles) are computed from each bootstrap

simulation, resulting in bootstrap distributions of the mean

occurrence rates at each location. We then compute quantiles

from the bootstrap distributions for use in assessing uncer-

tainty of the best-estimate rates. For uncertainties on the mean

rates, we compute the 5%–95%quantile range of the bootstrap

distribution.

To quantify the significance of differences between rates in

one period and another period, a different quantile-selection

scheme is used. We want to estimate how significant is the

difference between two best-estimate values, given their indi-

vidual bootstrap distributions. What is the probability that a

value from the lower distribution is greater than a value from

the higher distribution? The probability that a value in the

lower distribution is in the upper 0.224 fraction (the 77.6%

quantile) and the value in the higher distribution is in the lower

0.224 fraction (the 22.4% quantile) is (0.224)2 5 0.050, as-

suming the distributions are independent. Therefore, if the

22.4%–77.6% ranges of the distributions do not overlap, then

the best estimates are significantly different to at least 95%

confidence. This estimate of the significance of the differences is

conservative because the distributions are not, in fact, indepen-

dent. In the simulations, if a 1950–80 value of a bootstrap-resample

member is on the low (high) end of its bootstrap distribution,

then the 2030 value also tends to be on the low (high) end of its

distribution, because the long-term averaged rates from that

bootstrap member are lower (higher).

3. Results

We now discuss the impact of GSST and RSST variation on

TC activity andmake projections into the 2030s. To analyze the

impact of various levels of GSST and RSST on TC activity,

both individually and in combination, long NASHM simula-

tions are performed (118 000 years) with GSST and RSST held

fixed in various combinations. We choose 30 combinations of

fixed-anomaly values with respect to 1900–2017, using the six

values20.58C,20.258C, 08C,10.258,10.58C, and10.758C for

TABLE 1. Out-of-sample predictive skill assessment on the nine years with GSST anomaly above 1.5s by coastal region and intensity

range according to twomeasures: accumulated log likelihood and F score based on precision and recall. In each entry, a plus indicates that

the climate-dependent model has a higher total log likelihood than the naive model at predicting rates of TS occurrence within 350 km of

the indicated region and intensity range, and minus indicates that the climate-dependent model is not more skillful than the naive model.

Numbers for F scores are the percentage increase or decrease in the climate-sensitive F score relative to the naive F score.

Northwest Gulf Florida Southeast Northeast U.S. total North Atlantic

Cat0 1; 5% 1; 8% 1; 0% 1; 8% 1; 6% 1; 8%

Cat1–2 1; 15% 1; 15% 1; 10% 2; 26% 1; 4% 1; 12%

Cat3–5 1; 23% 1; 51% 1; 79% 1; 92% 1; 71% 1; 56%

FIG. 4.As in Fig. 2, but here using the simulations of the nine out-of-sample years (1987, 1997, 1998, 2003, 2009, 2014, 2015, 2016, 2017) of

the forecast skill test. Note that, formanyVmax bins (and all of Virginia–New Jersey), there are zero events in the nine out-of-sample years;

an event count falls inside the inner 90% model spread.
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GSST and the five values 20.58C, 20.258C, 08C, 10.258,
and 10.58C for RSST. This represents a range from 22.1

to 13.2 standard deviations for GSST and from 21.9 to 11.9

standard deviations for RSST. We then compute from the

simulated TCs for each GSST–RSST combination the average

annual rates of TC passing through the set of 50-km circles on

the gridded field defined previously. Figure 5 shows the annual

Cat11 (Saffir–Simpson category 1 and higher) TC occurrence

rates for 9 of the 30 GSST–RSST combinations. Increasing

RSST (bottom to top) is primarily associated with an overall

basinwide increase in rate, with relatively little spatial variation

in the increase. By contrast, increasing GSST (left to right)

results in changes in geographic distribution, but compara-

tively little basinwide change in TC annual rates. Of particular

interest is a shift eastward in Gulf and Atlantic occurrence rate

as GSST is increased from a neutral to an elevated level. For

example, in the Gulf the hot spot near Texas and Louisiana for

GSST5 08C anomaly (for any RSST) shifts eastward near the

Florida Panhandle at GSST 5 10.58C anomaly. Similarly, the

hot spot near North Carolina shifts eastward off the U.S.

East Coast.

The ratemaps of Fig. 5 are bilinearly interpolated in the two-

dimensional GSST–RSST space to the GSST and RSST values

of each year of the CMIP5 projections, 2020–38 for RCP4.5

and 2020–30 for RCP8.5. (We could have directly simulated the

response to the projected CMIP5 RSST and GSST values. We

chose the approach of simulating the GSST–RSST combina-

tions then interpolating in order to document the separate

dependence on each SST covariate. As the CMIP5 ensemble-

mean RSST and GSST are smoothly varying, interpolating vs

direct simulation yields very similar results year by year

through the projected time horizon.)We then compare the rate

maps at the end of the projections to NASHM’s rate map

from a set of 1950–80 historical baseline simulations. Note that

the rates depend on time only via the SST indices, and thus the

RCP4.5 rate map in 2038 is identical to the RCP8.5 rate map in

2030. The SST values at these final dates are GSST 5 0.758C
and RSST 5 0.208C, expressed as anomalies from the 1900–

2017 means. It may appear at first that a single projected year

(2030 or 2038) is being compared to an average over a range of

years (1950–80), which would be problematic due to internal

variability. However, the single projected year is in fact derived

from 118 000 years of stochastic simulation variability, and the

driving GSST and RSST values are derived from an ensemble

mean of climate model simulations, each with its individual

variability.

Figure 6 shows the TC occurrence rate maps for the 1950–80

baseline, the 2038 RCP4.5 (equivalent to 2030 RCP8.5), and

the difference, for intensities of Cat11, Cat31, and Cat41.

Basic climatological features of the maps are peaks in rates in

theGulf andU.S. mid-Atlantic, as well as a rapid decrease with

intensity of rates at mid latitudes, seen by comparing Cat31

FIG. 5. Cat11 annual occurrence rate maps as a function GSST and RSST anomaly, as labeled. Anomaly labels represent degrees

Celsius difference from the 1900–2017means. GSST is the first label, andRSST is -the second.White regions correspond to rates below the

indicated dark-blue contour.
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(middle row) and Cat41 (bottom row) with Cat11 (top row).

The difference maps reveal a complex geographic pattern of

change that is approximately coherent across the TC intensi-

ties. In the eastern Gulf, extending from the eastern Yucatan,

through western Cuba, to the Florida Panhandle, change in TC

occurrence rates is either positive or neutral. Over that region,

the fractional rate increase is greatest for intensity Cat41
(bottom row). By contrast, in the westernGulf and theAtlantic

off the U.S. Eastern Seaboard, change in TC occurrence rates

is mostly negative or neutral, except for a positive region at

higher intensities near the Texas–Mexico border. In both of

these regions, the fractional decrease is smallest for intensity

Cat41 (bottom row). Farther east, into the central Atlantic,

the change is again negative or neutral. This change pattern can

in part be summarized as a shift eastward in rates for both the

Gulf and the Atlantic, resulting in a west-to-east negative-to-

positive pattern in both the Gulf and the western Atlantic.

Superposed on this spatial pattern is a broad increase at the

highest intensity levels.

For U.S. Gulf Coast states, the eastward shift results in a

projected decrease in TC occurrence rates to the west, partic-

ularly on eastern coastal Texas and western Louisiana, and a

projected increase to the east, particularly Florida’s Panhandle

and Gulf Coasts. In between, centered roughly on Mississippi

and Alabama, is a node, with little or no change.

Figure 7 shows the TC occurrence rates averaged over four

coastal regions: Texas through Alabama, Florida’s Gulf Coast,

Florida’s Atlantic coast, and Georgia through Cape Hatteras,

NC. Rates are shown for three time periods: 1950–80, 2010–19,

and 2030 for RCP8.5 (identical to 2038 for RCP4.5). Consistent

with the change maps of Fig. 6, rates increase on Florida’s Gulf

Coast and decrease Georgia to Cape Hatteras for all intensity

thresholds, and the changes from 1950–80 to 2030 are signifi-

cant according to the bootstrap analysis described in section 2d,

FIG. 6. Maps of annual TC annual occurrence rates (yr21) for (left) 1950–80, (center) 2030 (RCP8.5) and 2038 (RCP4.5), and (right) the

difference for (top) TCs of intensity Cat11, (middle) Cat31, and (bottom) Cat41. The contour scales change from row to row, as

indicated by the color bars. In the left and center columns, white regions have rates below the dark-blue scale indicated on the color bars.

In the right column, stippling indicates points where the differences are estimated to be significant at 95% confidence by a bootstrap

analysis.
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except for Cat31 on the Florida Gulf. Rates decrease across

Texas–Alabama for Cat11 and Cat31, but the change for

Cat41 is not significant.

We note that RSST displays considerable year-to-year and

decadal variability over the historic period (Fig. 3). This in turn

drives year-to-year and decadal variability in TC rates. The

RSST projections based on ensemble-mean CMIP5 results,

however, show no variability. The resulting projected TC rates

therefore reflect only the secular increase of the ensemble-

mean GSST. Natural climate variability will certainly continue

to drive variability in TC rates. Using ensemble-mean pro-

jected SST, however, we have no basis to project such vari-

ability, and we focus instead on the change driven by the

secular variation in GSST.

4. Discussion

To explore the causes for the pattern of increased and de-

creased TC rates, we look at the GSST and RSST dependence

of the three major components of NASHM: formation, track,

and intensity. In NASHM, TC formation occurs by sampling

Poisson densities whose mean rates are dependent on GSST

and RSST (Hall and Yonekura 2013). Figure 8 (bottom row)

shows spatial maps of change in mean rates as a function of

GTSST and RSST compared with the neutral state of zero

GSST and RSST anomalies. GSST and RSST induce different

formation responses. Elevating GSST by 0.758C (the 2030

RCP8.5 and 2038 RCP4.5 value, 3.2 standard deviations above

the 1900–2017 mean) with RSST held neutral, results in a

modest increase in overall annual formation count (from 10.4

to 12.6). However, there is a distinct eastward shift in forma-

tion, illustrated by the large increase in the eastern NA MDR.

By contrast, overall storm count is more sensitive to RSST.

Elevating RSST by the much smaller 0.208C (the 2030 RCP8.5

and 2038RCP4.5 value, roughly 1 standard deviation above the

1900–2017 mean), with GSST held neutral, results in about the

same increased storm count (from 10.4 to 12.5). However, in

contrast to GSST, the formation increase induced by RSST is

spatially more uniform throughout the tropical North Atlantic.

The combined GSST and RSST increases, reflecting the 2030

FIG. 7. Annual occurrence rates for (top) Cat11, (top middle) Cat31, and (bottom middle) Cat41, averaged

over 50-km-radius circles spanning (bottom) four coastal locations. Dark blue represents the period 1950–80, light

blue is the period 2010–19, and red is the RCP8.5 projected rates for 2030 (identical to the RCP4.5 projected rates

for 2038). The boxes and whiskers indicate the best-estimate rates (midlines) and the 22%–78% (top/bottom of the

boxes) and 5%–95% confidence ranges (whiskers) about the best estimate determined from a bootstrap resampling

analysis. Heavy lines indicate results that are based on 1900–2017 HURDAT2, and light lines indicate results that

are based on 1970–2017 HURDAT2.
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RCP8.5 and 2038 RCP4.5 values, result in a basinwide count

increase from 10.4 to 15.2, combined with the eastward shift

induced by RSST.

TC mean track in NASHM also depend on the SST cova-

riates (Hall andYonekura 2013). To better visualize the impact

of the SST covariates on the TC tracks, we turn off the sto-

chastic component of NASHM and release mean tracks from a

fixed set of locations. Figure 8 (top row) shows the results for

the same set of GSST andRSST as the formation results. There

is an eastward anomaly in the mean track for elevated GSST,

but little change for RSST. For example, the mean track that

landfalls in Louisiana in the neutral case instead landfalls in the

Florida Panhandle in the 0.758 and 0.08C and 0.758 and 0.208C
cases. In addition, in midlatitudes, mean tracks near the U.S.

East Coast recurve away from the U.S. Northeast more in the

elevated GSST cases.

TC intensity in NASHM is modeled by a weighted resam-

pling scheme with perturbation of Vmax time series (Hall and

Yonekura 2013).Weights are applied such that it is more likely

to resample aVmax time series from a historical year whose SST

covariate values are similar to the simulation year. The weights

are selected objectively to minimize out-of-sample Vmax fore-

cast error. Figure 8 (middle row) shows histograms of simula-

tion lifetime maximum intensity (LMI) in the elevated GSST

andRSST states compared to the neutral state. Elevated RSST

induces an increase at all intensities, with the fractional change

increasing gradually with intensity. By contrast, elevatedGSST

induces a sizeable increase only at Cat5, with smaller or no

increases at lower intensities. The combined GSST–RSST in-

crease, representing 2030 (RCP8.5) and 2038 (RCP4.5), results

in an approximate factor-2.5 increase in Cat5 occurrence and a

30%–60% increase at lower intensity thresholds.

An important point here is that large-scale changes in TC

characteristics (formation, propagation, intensity) in response

to these global and basin SST covariates can result in regional

coastal changes in TC activity that are highly heterogeneous,

even in sign. Figure 9 is an idealized illustration of this point

that helps to understand the increased occurrence rate in the

FIG. 8. Illustration of influence of covariates GSST and RSST on (top) TC tracks, (middle) LMI, and (bottom) formation rate. GSST–

RSST anomaly values with respect to 1900–2017 are (left) 0.758 and 0.008C, (center) 0.008 and 0.208C, and (right) 0.758 and 0.208C. The
0.758 and 0.208C combination corresponds to the 2030 RCP8.5 and 2038 RCP4.5 values, as labeled at top. For tracks, the stochastic

component of NASHM is turned off for clarity, leaving only mean tracks, which are launched from five specified locations. In each panel,

blue is the neutral state and red is the GSST–RSST combination. For LMI, intensity is binned in Saffir–Simpson categories, and the ratios

with respect to the neutral state are plotted. For TC formation, the difference between theGSST–RSST combination and the neutral state

is mapped, with red and blue being positive and negative, respectively. Contour units are per year per 18 latitude–longitude grid box.

Differences in basinwide annual TC formation are inset the top right of each bottom panel.
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northeast Gulf. Consider two sets of idealized mean tracks

both originating from the same fixed set of formation points at

158N every 0.58 in longitude. One set differs from the other

only in a constant uniform eastward propagation anomaly of

5 km eastward for every 25 km northward. Despite the uni-

formity of the anomaly, the coastal impact varies regionally.

Figure 9 shows the example of Florida. Without the eastward

anomaly, Florida’s eastern Panhandle, Big Bend region, and

much of its Gulf Coast are shielded from direct landfalls. With

the eastward anomaly, parts of these regions now get direct

landfalls. Thus, there is an increase in activity on western

Florida. By contrast, the same track anomaly results in de-

creased activity on Florida’s east coast, especially the north-

east, because themean tracks now curve roughly parallel to the

coast without making landfalls. Clearly, with realistic tracks

(stochastic in NASHM), any region can be struck directly.

However, the idealization illustrates that mean track shifts,

even if uniform, can increase probability in some regions and

decrease it in other regions. The NASHMmean track changes

of Fig. 6 have similar character to these idealized changes and

result in the increased occurrence rates in the northeast Gulf.

NASHM is trained on HURDAT2 1900–2017. However,

there are known biases in the earlier presatellite record, ap-

proximately prior to 1970 (Landsea 2007; Landsea et al. 2010;

Vecchi and Knutson 2011), especially for weak storms short

that do not landfall. We have attempted to buffer against these

biases in the model training by only using HURDAT2 tracks

that reach at least tropical storm (TS) status and starting the

tracks at the point where TS status is reached. Nonetheless, to

test sensitivity to the data record period, we have reconstructed

NASHM using 1970–2017 HURDAT2. Vecchi and Knutson

(2011) estimate that after 1965 undercounts in annual TC fre-

quency due to sparce sampling are negligible, hence 1970–2017

is inside the well-sampled satellite era. Figure 10 repeats

Fig. 8’s illustration of formation, mean track, and LMI

sensitivity to GSST and RSST, but now for the 1970–2017-

trained model. The GSST and RSST anomalies for 2030/2038

(RCP8.5/RCP4.5) are here reduced to 0.578 and 0.198C from

0.728 and 0.208C because they are now computed with respect

to a 1970–2017 baseline.

The qualitative behavior in TC sensitivity is similar for all

three model components: a shift eastward in formation toward

the eastern MDR, an eastward propagation anomaly, and an

increase in the LMI distribution at the highest intensities. The

resulting changes in TC passage rates, shown in Fig. 11, are also

similar to those of the 1900–2017 training shown in Fig. 6.

However, there are quantitative differences: the basinwide

increase with respect to the zero-anomaly state for GSDST and

RSST in annual TC count is reduced from 4.8 to 3.0, and the

eastward track anomaly is enhanced. The change in baseline

period explainsmuch of the change in basinwide formation; the

1970–2017 period has 1.5more TC yr21 than 1900–2017 (11.9 vs

10.4). Undercounts in the early HURDAT2 record (Landsea

2007) may be responsible for some of this difference. The in-

creased eastward track anomaly could be an indication of an

acceleration in the signal or simply statistical variability, which

is exaggerated in the shorter data training record. These

quantitative differences have an impact on occurrence rates in

certain coastal regions. Figure 6 shows rates based on 1970–

2017 analysis, as well as 1900–2017. The uncertainty ranges for

the shorter period are significantly larger, and the western Gulf

and U.S. Southeast do not change significantly. However, the

increase in rates on Florida’s Gulf Coast is significantly am-

plified, likely due to the increased eastward track anomaly. In

addition, the 1970–2017-based analysis projects and increase

on Florida’s Atlantic coast for Cat11 and Cat31. Southern

Florida is near a node between decreased and increased rates

(Figs. 6 and 11), and in the 1970–2017 period.

Similar SST-dependent formation, track, and intensity fea-

tures have been reported in other studies, which have

examined a range of time periods and drivingmechanisms. The

NASHM intensity variations are consistent with a number of

modeling and observational studies finding that positive trends

in TC activity are fractionally greatest at the highest intensities

(Sobel et al. 2016; Gutmann et al. 2018; Knutson et al. 2020;

Elsner et al. 2008; Kossin et al. 2013, 2020). Meanwhile, an

eastward shift in formation has been seen by Kossin et al.

(2010) during the warm phase of the Atlantic meridional mode

(AMM), due not only to increased subtropical SST, but also to

covariation with vertical wind shear. Eastward formation shifts

have also been reported byWang et al. (2011) in the context of

expandedAtlantic warm pools, byMurakami andWang (2010)

in a 20-km-mesh atmosphericmodel driven by SST projections,

and by Colbert et al. (2013) in a CMIP3 downscaling study.

Chauvin et al. (2019) has also seen an eastward formation shift

using high-resolution global modeling.

A subtropical eastward track anomaly similar to that shown

here (Figs. 8 and 10, top row) has also been reported in mod-

eling and observational studies. Explanations of mechanisms

vary, but all the studies have in common an association be-

tween increased SST and changes in tropospheric wind pat-

terns that steer TCs.Wang et al. (2011) argue that an expanded

Atlantic warm pool, which could be associated with changes in

FIG. 9. An idealized set of tracks illustrating the regional impacts

of basinwide propagation changes. Two sets of mean tracks start

from the same origin points. Red differs from blue only in having a

constant uniform propagation anomaly of 5 km eastward for every

25 km northward. Florida’s Gulf Coast is more exposed to the red

tracks, whereas its Atlantic coast is less exposed.
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either GSST or RSST, results in a weakened NA subtropical

high pressure system, thereby weakening westward tropical

midtropospheric winds that steer TCs. In statistically down-

scaled CMIP3 climate change simulations, Colbert et al. (2013)

observe an eastward TC track anomaly, due largely to a reduc-

tion in westward steering winds. A study of Hurricane Sandy

under enhanced SST conditions found a tendency for the storm

to recurve eastward away from the coast (Lau et al. 2016),

similar to the eastward anomaly seen here in midlatitude. Liu

et al. (2017), using 4-km-resolution regional modeling,

detected a northeastward anomaly in the NA midtropospheric

TC steering winds. On the basis of reconstructions from proxy

records, Baldini et al. (2016) presented evidence for a north-

eastward shift over the industrial era in TC tracks that originate

in NAMDR. Recently, Hassanzadeh et al. (2020) have found in

analysis of CMIP5 climate projections a positive meridional

anomaly in steering winds in the eastern Gulf, which would di-

rect tracks northward before reaching the western Gulf, con-

sistent with the eastward anomaly we find in the Gulf. All of

these changes project onto U.S. landfall rates.

The projected basinwide increase in annual NA TC fre-

quency shown here runs counter to many, though not all,

previous results. Climate model results of Murakami et al.

(2020) indicate that increased NA TC frequency of recent

decades will wane in future, as greenhouse gas forcing domi-

nates aerosol forcing, and TC frequency will decline in the NA

starting around 2030 (their Fig S3). By contrast, Bhatia et al.

(2018) show an increase in global TC frequency, including in

the NA. Increased frequency has also been seen in CMIP5

models (Villarini and Vecchi 2013). The work of Vecchi et al.

(2019) indicates that projected TC frequency change has

complex dependence on numerical model resolution and the

spatial pattern of warming, with decreases in some experiments

and increases in others. Analyzing the distribution of results

across a large number of studies, Knutson et al. (2020) show

that the median North Atlantic TC frequency change is neg-

ative, but that the interquartile range across the studies spans

positive change. We deduce an increase of 4.6 yr21 in 2038

(RCP4.5) relative to a 1900–2017 baseline of 10.4 yr21, which is

an increase of 2.6 yr21 relative to the 1986–2005 baseline of

12.4 yr21 used by Knutson et al. (2020). The 21% increase (2.6/

12.4) falls within the 5%–95% quantile spread show by

Knutson et al. (2020). Similarly, themean time trend of 0.6 TCs

per decade 1995–2038 (RCP4.5) falls within the spread across

CMIP5 models shown by Villarini and Vecchi (2013) for the

first half of the twenty-first century. For the model trained on

1970–2017 HURDAT2, we deduce an increase by 2038

(RCP4.5) of 2.0 yr21 relative to 1986–2005, a 17% increase

FIG. 10. As in Fig. 8, but here for the model trained only on HURDAT2 from 1970 to 2017.
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(2.0/12.4) that also falls within the 5%–95% quantile spread

shown by Knutson et al. (2020).

5. Conclusions

In summary, we have used a statistical model trained on his-

torical TCs and large-scale SST indices to project U.S. hurricane

activity into the 2030s, given ensemble-mean climate model

projections of the SST indices under warming scenarios. We

find a complex signal of changing hazard along the U.S. coast

driven by changes in basinwide TC frequency and changes in

track characteristics. Some areas are forecast to experience in-

creased hazard, such as the Gulf Coast of Florida, and other

areas are forecast to experience decreased hazard, such as parts

of the western Gulf and the U.S. mid-Atlantic.

In our analysis, changes in U.S. TC activity are driven by pro-

jected secular increase in tropical SST and, indirectly, changes in

other factors impacting TC activity, such as steering winds, wind

shear, and spatial SSTpatterns, via their covariancewith the large-

scale SST indices. We stress that, in addition to these changes,

there is large, well-documented interannual TC variation driven

by internal modes of climate variability, in particular the AMO

(e.g., Goldenberg et al. 2001) and El Niño–Southern Oscillation

(ENSO) (e.g., Gray 1984). Ensemble-mean climate model SST

projections provide no prediction for these important modes of

variability, and we do not include their effects here. From year to

year, variations in TC activity driven by strong ENSO events can

be larger than the secular variations discussed here, and on a

multiyear time scale, a changing AMO phase may have an even

larger impact. It has not been our goal here to estimate the impact

on TCs of natural variability, such as the AMO and ENSO, im-

portant as they are. There are likely additional variations at small

scales inwind shear, steeringwinds, andSSTpatterns affectingTC

activity that are not correlated with GSST and RSST, and the

impact of these variations is also not directly represented here,

except through their impact on uncertainty estimates. Instead, our

aim has been to estimate the impact on TCs into the 2030s of

projected large-scale secular climate trends that exist in addition

to the natural variability. Estimation of trends in TC hazard in the

coming decades, as well has the impact of natural variability, has

important applications to estimating the changing risk to pop-

ulations and infrastructure in harm’s way.

FIG. 11. As in Fig. 6, but here the projected maps are based on NASHM trained on HURDAT2 1970–2017, instead of 1900–2017.

15 FEBRUARY 2021 HALL ET AL . 1333

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:59 PM UTC



Acknowledgments. This research was supported by the

National Aeronautics and Space Administration (NASA),

National Oceanic and Atmospheric Administration (NOAA),

and The Climate Service. Author Hall’s effort was funded by

NASA Modeling, Analysis, and Prediction (MAP) Program

Award 19-MAP19-0005.We thank three anonymous reviewers

for comments and ideas that led to an improved paper.

Data availability statement. The HURDAT2 data on which

NASHM is trained are freely available for download at the

National Hurricane Center website, as are the historical SST

data at the Hadley Centre website. CMIP5 model-projected

SST data are also freely available on several online platforms.

REFERENCES

Baldini, L. M., and Coauthors, 2016: Persistent northward North

Atlantic tropical cyclone migration over the past fine cen-

turies. Nat. Sci. Rep., 6, 37522, https://doi.org/10.1038%

2FSREP37522.

Bhatia, K., G. Vecchi, H. Murakami, S. Underwood, and J. Kossin,

2018: Projected response of tropical cyclone intensity and in-

tensification in a global climate model. J. Climate, 31, 8281–

8303, https://doi.org/10.1175/JCLI-D-17-0898.1.

Bister, M., and K. A. Emanuel, 2002: Low frequency variability of

tropical cyclone potential intensity, 1. Interannual to inter-

decadal variability. J. Geophys. Res., 107, 4801, https://doi.org/

10.1029/2001JD000776.

Bloemendaal, N., I. D. Haigh, H. de Moel, S. Muis, R. J. Haarsma,

and J. C. J. H. Aerts, 2020: Generation of a global synthetic

tropical cyclone hazard dataset using STORM. Sci. Data, 7, 40,

https://doi.org/10.1038/s41597-020-0381-2.

Brown, J. N., C. Langlais, and A. S. Gupta, 2015: Projected sea

surface temperature changes in the equatorial Pacific relative

to the warm pool edge. Deep-Sea Res. II, 113, 47–58, https://

doi.org/10.1016/j.dsr2.2014.10.022.

Chauvin, F., P. Romain, P. Palany, andA. Belmadani, 2019: Future

changes in Atlantic hurricanes with the rotated-stretched

ARPEGE-Climat at very high resolution. Climate Dyn., 54,

47–58, https://doi.org/10.1007/S00382-019-05040-4.

Colbert, A. J., B. J. Soden, G. A. Vecchi, and B. P. Kirtman, 2013:

The impact of anthropogenic climate change on North

Atlantic tropical cyclone tracks. J. Climate, 26, 4088–4095,

https://doi.org/10.1175/JCLI-D-12-00342.1.

Coumou, D., and Coauthors, 2015: The weakening summer circu-

lation in theNorthernHemispheremid-latitudes. Science, 348,

324–327, https://doi.org/10.1126/science.1261768.

Efron, B., 1979: Bootstrap methods: Another look at the jackknife.

Ann. Stat., 7 (1), 1–26, https://doi.org/10.1214/aos/1176344552.

Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing

intensity of the strongest tropical cyclones.Nature, 455, 92–95,

https://doi.org/10.1038/nature07234.

Emanuel, K., andA.H. Sobel, 2013: Response of tropical sea surface

temperature, precipitation, and tropical cyclone-related vari-

ables to changes in global and local forcing. J.Adv.Model. Earth

Syst., 5, 447–458, https://doi.org/10.1002/jame.20032.

——, R. Sundarajan, and J. Williams, 2008: Hurricanes and global

warming: Results from downscaling IPCC AR4 simulations.

Bull. Amer. Meteor. Soc., 89, 347–368, https://doi.org/10.1175/

BAMS-89-3-347.

Gillett, N. P., P. A. Stott, and B. D. Santer, 2008: Attribution of cyclo-

genesis region sea surface temperature change to anthropogenic

influence. Geophys. Res. Lett., 35, L09707, https://doi.org/10.1029/

2008GL033670.

Goldenberg, S. B., C.W. Landsea, A.M.Mestas-Nuñez, andW.M.

Gray, 2001: The recent increases inAtlantic hurricane activity.

Science, 293, 474–479, https://doi.org/10.1126/science.1060040.

Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I:

El Niño and the 30-mb quasi-biennial oscillation influences.

Mon. Wea. Rev., 112, 1649–1668, https://doi.org/10.1175/1520-

0493(1984)112,1649:ASHFPI.2.0.CO;2.

Gutmann, D., and Coauthors, 2018: Changes in hurricanes from a

13-yr convection-permitting pseudo-global warming simula-

tion. J. Climate, 31, 3643–3657, https://doi.org/10.1175/JCLI-

D-17-0391.1.

Hall, T. M., and S. Jewson, 2007: Statistical modeling of North

Atlantic tropical cyclone tracks. Tellus, 59A, 486–498, https://

doi.org/10.1111/j.1600-0870.2007.00240.x.

——, and E. Yonekura, 2013: North American tropical cyclone

landfall and SST: A statistical model study. J. Climate, 26,

8422–8439, https://doi.org/10.1175/JCLI-D-12-00756.1.

——, and K. Hureid, 2015: The frequency and duration of U.S.

hurricane droughts.Geophys. Res. Lett., 42, 3482–3485, https://

doi.org/10.1002/2015GL063652.

——, and M. Tippett, 2017: Pacific hurricane landfalls on Mexico

and SST. J. Appl. Meteor. Climatol., 56, 667–676, https://

doi.org/10.1175/JAMC-D-16-0194.1.

Hassanzadeh, P., C.-Y. Lee, E. Nabizadeh, S. J. Camargo, D. Ma,

and L. Y. Yeung, 2020: Effects of climate change on the

movement of future landfalling Texas tropical cyclones. Nat.

Commun., 11, 3319, https://doi.org/10.1038/s41467-020-

17130-7.

Held, I. M., and B. J. Soden, 2006: Robust changes of the hydro-

logical cycle to global warming. J. Climate, 19, 5686–5699,

https://doi.org/10.1175/JCLI3990.1.

James, M. K., and L. B. Mason, 2005: Synthetic tropical cyclone

database. J. Waterw. Port Coastal Ocean Eng., 131, 181–192,

https://doi.org/10.1061/(ASCE)0733-950X(2005)131:4(181).

Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: Multimodel

assessment of regional surface temperature trends: CMIP3

and CMIP5 twentieth-century simulations. J. Climate, 26,

8709–8743, https://doi.org/10.1175/JCLI-D-12-00567.1.

——, and Coauthors, 2019: Tropical cyclones and climate change

assessment: Part I: Detection and attribution. Bull. Amer.

Meteor. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-

D-18-0189.1.

——, and Coauthors, 2020: Tropical cyclones and climate change

assessment: Part II. Projections.Bull. Amer. Meteor. Soc., 101,

E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

Kossin, J. P., 2015: Validating atmospheric reanalysis data using

tropical cyclones as thermometers. Bull. Amer. Meteor. Soc.,

96, 1089–1096, https://doi.org/10.1175/BAMS-D-14-00180.1.

——, S. J. Camargo, and M. Sitkowski, 2010: Climate modulation

of North Atlantic hurricane tracks. J. Climate, 23, 3057–3076,

https://doi.org/10.1175/2010JCLI3497.1.

——, T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a

new global record of tropical cyclone intensity. J. Climate, 26,

9960–9976, https://doi.org/10.1175/JCLI-D-13-00262.1.

——, T. M. Hall, T. Knutson, K. E. Kunkel, R. J. Trapp, D. E.

Waliser, and M. F. Wehner, 2017: Extreme storms. Climate

Science Special Report: Fourth Annual National Climate

Assessment, Vol. I, D. J. Weubbles et al., Eds., U.S. Global

Climate Change Research Program, 256–276.

——, K. R. Knapp, T. L. Olander, and C. S. Velden, 2020: Global

increase inmajor tropical cyclone exceedance probability over

1334 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:59 PM UTC

https://doi.org/10.1038%2FSREP37522
https://doi.org/10.1038%2FSREP37522
https://doi.org/10.1175/JCLI-D-17-0898.1
https://doi.org/10.1029/2001JD000776
https://doi.org/10.1029/2001JD000776
https://doi.org/10.1038/s41597-020-0381-2
https://doi.org/10.1016/j.dsr2.2014.10.022
https://doi.org/10.1016/j.dsr2.2014.10.022
https://doi.org/10.1007/S00382-019-05040-4
https://doi.org/10.1175/JCLI-D-12-00342.1
https://doi.org/10.1126/science.1261768
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1038/nature07234
https://doi.org/10.1002/jame.20032
https://doi.org/10.1175/BAMS-89-3-347
https://doi.org/10.1175/BAMS-89-3-347
https://doi.org/10.1029/2008GL033670
https://doi.org/10.1029/2008GL033670
https://doi.org/10.1126/science.1060040
https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
https://doi.org/10.1175/JCLI-D-17-0391.1
https://doi.org/10.1175/JCLI-D-17-0391.1
https://doi.org/10.1111/j.1600-0870.2007.00240.x
https://doi.org/10.1111/j.1600-0870.2007.00240.x
https://doi.org/10.1175/JCLI-D-12-00756.1
https://doi.org/10.1002/2015GL063652
https://doi.org/10.1002/2015GL063652
https://doi.org/10.1175/JAMC-D-16-0194.1
https://doi.org/10.1175/JAMC-D-16-0194.1
https://doi.org/10.1038/s41467-020-17130-7
https://doi.org/10.1038/s41467-020-17130-7
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1061/(ASCE)0733-950X(2005)131:4(181)
https://doi.org/10.1175/JCLI-D-12-00567.1
https://doi.org/10.1175/BAMS-D-18-0189.1
https://doi.org/10.1175/BAMS-D-18-0189.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/BAMS-D-14-00180.1
https://doi.org/10.1175/2010JCLI3497.1
https://doi.org/10.1175/JCLI-D-13-00262.1


the past four decades. Proc. Natl. Acad. Sci. USA, 117, 11 975–

11 980, https://doi.org/10.1073/pnas.1920849117.

Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to

1900. Eos, Trans. Amer. Geophys. Union, 88, 197–202, https://
doi.org/10.1029/2007EO180001.

——, and J. L. Franklin, 2013: Atlantic hurricane database uncer-

tainty and presentation of a new database format. Mon. Wea.

Rev., 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-

00254.1.

——, G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of

duration thresholds on Atlantic tropical cyclone counts. J. Climate,

23, 2508–2519, https://doi.org/10.1175/2009JCLI3034.1.
Lau, W. K. M., J. J. Shi, W. K. Tao, and K. M. Kim, 2016: What

would happen to Superstorm Sandy under the influence of a

substantially warmer Atlantic. Geophys. Res. Lett., 43, 802–
811, https://doi.org/10.1002/2015GL067050.

Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An

environmentally forced tropical cyclone hazard model. J. Adv.

Earth Syst., 10, 223–241, https://doi.org/10.1002/2017MS001186.

Liu, C., and Coauthors, 2017: Continental-scale convection-

permitting modeling of the current and future climate of

North America. Climate Dyn., 49, 71–95, https://doi.org/

10.1007/s00382-016-3327-9.

Mann, M. E., B. A. Steinman, and S. K. Miller, 2020: Absence of

internal multidecadal and interdecadal oscillations in climate

model simulations. Nat. Commun., 11, 49, https://doi.org/

10.1038/s41467-019-13823-w.

MoftakharI, H. R., G. Salvadori, A. AghaKouchak, B. F. Sanders,

and R. A. Matthew, 2017: Compounding effects of sea level

rise and fluvial flooding.Proc. Natl. Acad. Sci. USA, 114, 9785–
9790, https://doi.org/10.1073/pnas.1620325114.

Murakami, H., and B. Wang, 2010: Future change of North

Atlantic tropical cyclone tracks: Projection by a 20-km-mesh

global atmospheric model. J. Climate, 23, 2699–2721, https://
doi.org/10.1175/2010JCLI3338.1.

——, E. Levin, T. L. Delworth, R. Gudgel, and P.-C. Hsu, 2018:

Dominant effect of relative tropical Atlantic warming on

major hurricane occurrence. Science, 362, 794–799, https://

doi.org/10.1126/science.aat6711.

——, and Coauthors, 2020: Detected climatic change in global

distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA,

117, 10 706–10 714, https://doi.org/10.1073/pnas.1922500117.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.

Alexander, D. P. Rowell, E. C. Kent, andA. Kaplan, 2003: Global

analysis of sea surface temperature, sea ice, and night marine air

temperature since the late nineteenth century. J. Geophys. Res.,

108, 4407, https://doi.org/10.1029/2002JD002670.

Santer, B. D., and Coauthors, 2006: Forced and unforced ocean

temperature changes in Atlantic and Pacific tropical cyclo-

genesis regions. Proc. Natl. Acad. Sci. USA, 103, 13 905–

13 910, https://doi.org/10.1073/pnas.0602861103.

Smith, A., and R. W. Katz, 2013: US billion-dollar weather and

climate disasters: Data sources, trends, accuracy and biases.

Nat. Hazards, 67, 387–410, https://doi.org/10.1007/s11069-013-

0566-5.

Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and

A.A.Wing, 2016: Human influence on tropical cyclone intensity.

Science, 353, 242–246, https://doi.org/10.1126/science.aaf6574.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012:An overview of

CMIP5 and the experimental design.Bull. Amer.Meteor. Soc.,

93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

Tebaldi, C., B.H. Strauss, andC.E. Zervas, 2012:Modelling sea level

rise impacts on storm surges along US coasts. Environ. Res.

Lett., 7, 014032, https://doi.org/10.1088/1748-9326/7/1/014032.

Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface

temperature change on tropical cyclone potential intensity.

Nature, 450, 1066–1070, https://doi.org/10.1038/nature06423.

——, and T. R. Knutson, 2011: Estimating annual numbers of

Atlantic hurricanes missing from the HURDAT database

(1878–1965) using ship track density. J. Climate, 24, 1736–
1746, https://doi.org/10.1175/2010JCLI3810.1.

——,K. L. Swansom, andB. J. Soden, 2008:Whither hurricane activity.

Science, 322, 687–689, https://doi.org/10.1126/science.1164396.
——, and Coauthors, 2019: Tropical cyclone sensitivity to CO2

doubling: Roles of atmospheric resolution, synoptic variabil-

ity, and background climate changes. Climate Dyn., 53, 5999–

6033, https://doi.org/10.1007/s00382-019-04913-y.

Vickery, P. J., P. F. Skerlj, and L. A. Twisdale, 2000: Simulation of

hurricane risk in the U.S. using empirical track model.

J. Struct. Eng., 126, 1222–1237, https://doi.org/10.1061/(ASCE)

0733-9445(2000)126:10(1222).

Villarini, G., and G. A. Vecchi, 2013: Projected increases in North

Atlantic tropical cyclone intensity fromCMIP5models. J. Climate,

26, 3231–3240, https://doi.org/10.1175/JCLI-D-12-00441.1.

Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional

mode and hurricane activity. Geophys. Res. Lett., 34, L07709,

https://doi.org/10.1029/2007GL029683.

Wang, C., H. Liu, S.-K. Lee, and R. Atlas, 2011: Impact of the Atlantic

warm pool on United States landfalling hurricanes.Geophys. Res.

Lett., 38, L19702, https://doi.org/10.1029/2011GL049265.

Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii, 2017:

Future changes in tropical cyclone activity in high-resolution

large-ensemble simulations. Geophys. Res. Lett., 44, 9910–

9917, https://doi.org/10.1002/2017GL075058.

15 FEBRUARY 2021 HALL ET AL . 1335

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:59 PM UTC

https://doi.org/10.1073/pnas.1920849117
https://doi.org/10.1029/2007EO180001
https://doi.org/10.1029/2007EO180001
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/2009JCLI3034.1
https://doi.org/10.1002/2015GL067050
https://doi.org/10.1002/2017MS001186
https://doi.org/10.1007/s00382-016-3327-9
https://doi.org/10.1007/s00382-016-3327-9
https://doi.org/10.1038/s41467-019-13823-w
https://doi.org/10.1038/s41467-019-13823-w
https://doi.org/10.1073/pnas.1620325114
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1175/2010JCLI3338.1
https://doi.org/10.1126/science.aat6711
https://doi.org/10.1126/science.aat6711
https://doi.org/10.1073/pnas.1922500117
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1073/pnas.0602861103
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1126/science.aaf6574
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1088/1748-9326/7/1/014032
https://doi.org/10.1038/nature06423
https://doi.org/10.1175/2010JCLI3810.1
https://doi.org/10.1126/science.1164396
https://doi.org/10.1007/s00382-019-04913-y
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
https://doi.org/10.1175/JCLI-D-12-00441.1
https://doi.org/10.1029/2007GL029683
https://doi.org/10.1029/2011GL049265
https://doi.org/10.1002/2017GL075058

